Thermophysical Properties of Semiconductor Process Gases Determined with Acoustic Techniques J.J. Hurly Physical and Chemical Properties Division National Institute of Standards and Technology Gaithersburg, MD 20899-8380 U.S.A. We measured the speed of sound in the process gases Cl_2 , HBr, BCl_3 , WF_6 , C_2H_4O (ethylene oxide) and in the surrogate gases SF_6 , CF_4 , and C_2F_6 . (The surrogate gases are used to in the calibrate mass flow controllers.) The data span the temperature range 200 K to 475 K and the pressure range 25 kPa to 1500 kPa or to 80% of the vapor pressure for condensable gases. The data were analyzed to obtain ideal-gas heat capacities C_p (T) with uncertainties of $0.001 \times Cp$. The data were also used to parameterize model pair and three-body intermolecular potentials which, in turn, were used to estimate the properties of the gases up 1000 K, a temperature well above the range of the data. From the model potentials, we calculated the equation of state P(V,T) and the viscosity $\eta(T)$. For gases where other data exist, we find the errors in calculated properties are less than $0.001 \times V$ and $0.1 \times \eta$. The thermal conductivity $\kappa(T)$ was estimated from $\eta(T)$ and Cp with an uncertainty of approximately $0.1 \times \kappa$. We plan similar measurements in other process gases and gas mixtures, direct acoustic measurements of the transport properties, and the dissemination of the results in a user-friendly data base.